- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Aryana, Kiumars (2)
-
Garud, Parth (2)
-
Gu, Tian (2)
-
Hu, Juejun (2)
-
Vitale, Steven (2)
-
Bae, Hyung‐Bin (1)
-
Dao, Khoi Phuong (1)
-
Julian, Matthew (1)
-
Kang, Myungkoo (1)
-
Kim, Hyun Jung (1)
-
Kim, Hyun_Jung (1)
-
Lee, Tae‐Woo (1)
-
Liberman, Vladimir (1)
-
Ocampo, Carlos_A Ríos (1)
-
Popescu, Cosmin Constantin (1)
-
Popescu, Cosmin_Constantin (1)
-
Richardson, Kathleen A (1)
-
Richardson, Kathleen_A (1)
-
Sharma, Rashi (1)
-
Zhang, Yifei (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Programmable and reconfigurable optics hold significant potential for transforming a broad spectrum of applications, spanning space explorations to biomedical imaging, gas sensing, and optical cloaking. The ability to adjust the optical properties of components like filters, lenses, and beam steering devices could result in dramatic reductions in size, weight, and power consumption in future optoelectronic devices. Among the potential candidates for reconfigurable optics, chalcogenide‐based phase change materials (PCMs) offer great promise due to their non‐volatile and analogue switching characteristics. Although PCM have found widespread use in electronic data storage, these memory devices are deeply sub‐micron‐sized. To incorporate phase change materials into free‐space optical components, it is essential to scale them up to beyond several hundreds of microns while maintaining reliable switching characteristics. This study demonstrated a non‐mechanical, non‐volatile transmissive filter based on low‐loss PCMs with a 200 × 200 µm2switching area. The device/metafilter can be consistently switched between low‐ and high‐transmission states using electrical pulses with a switching contrast ratio of 5.5 dB. The device was reversibly switched for 1250 cycles before accelerated degradation took place. The work represents an important step toward realizing free‐space reconfigurable optics based on PCMs.more » « less
-
Garud, Parth; Aryana, Kiumars; Popescu, Cosmin_Constantin; Vitale, Steven; Sharma, Rashi; Richardson, Kathleen_A; Gu, Tian; Hu, Juejun; Kim, Hyun_Jung (, physica status solidi (RRL) – Rapid Research Letters)Electrically tunable optical devices present diverse functionalities for manipulating electromagnetic waves by leveraging elements capable of reversibly switching between different optical states. This adaptability in adjusting their responses to electromagnetic waves after fabrication is crucial for developing more efficient and compact optical systems for a broad range of applications, including sensing, imaging, telecommunications, and data storage. Chalcogenide‐based phase‐change materials (PCMs) have shown great promise due to their stable, nonvolatile phase transition between amorphous and crystalline states. Nonetheless, optimizing the switching parameters of PCM devices and maintaining their stable operation over thousands of cycles with minimal variation can be challenging. Herein, the critical role of PCM pattern as well as electrical pulse form in achieving reliable and stable switching is reported on, extending the operational lifetime of the device beyond 13000 switching events. To achieve this, a computer‐aided algorithm that monitors optical changes in the device and adjusts the applied voltage in accordance with the phase transformation process is developed, thereby significantly enhancing the lifetime of these reconfigurable devices. The findings reveal that patterned PCM structures show significantly higher endurance compared to blanket PCM thin films.more » « less
An official website of the United States government
